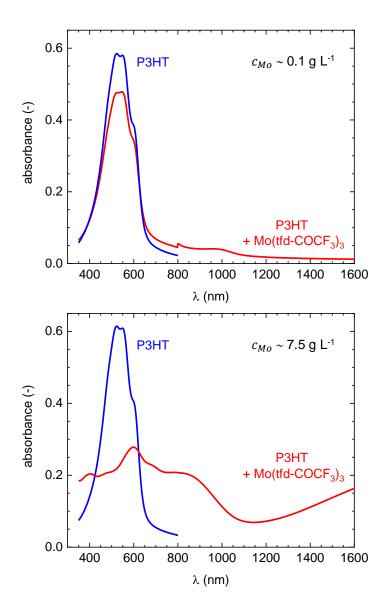
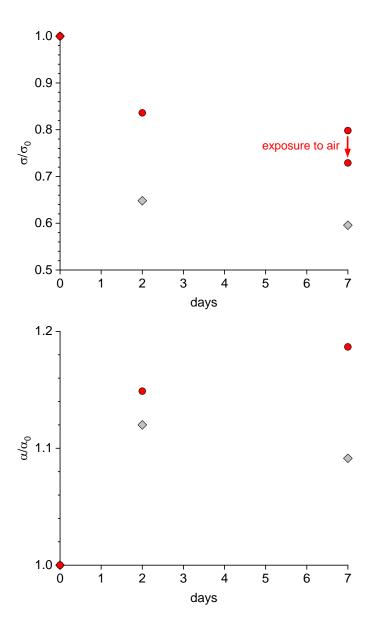
Supporting Information

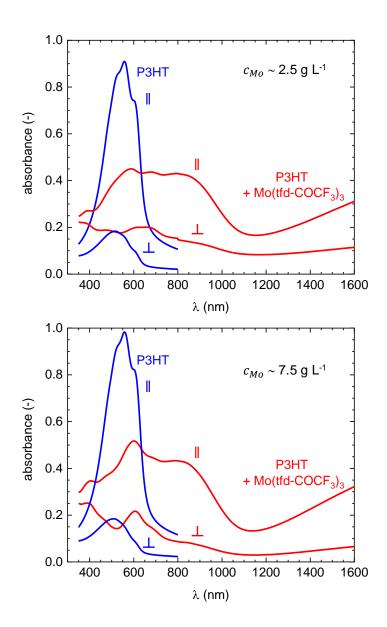
High thermoelectric power factor of poly(3-hexylthiophene) through in-plane alignment and doping with a molybdenum dithiolene complex

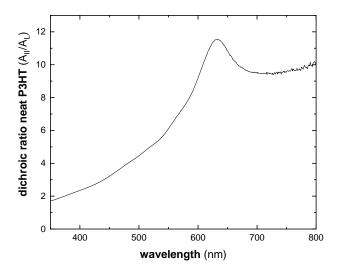

Viktoriia Untilova,¹ Jonna Hynynen,² Anna I. Hofmann,² Dorothea Scheunemann,² Yadong Zhang,³ Stephen Barlow,³ Martijn Kemerink,⁴ Seth R. Marder,³ Laure Biniek,¹ Christian Müller,²* Martin Brinkmann¹*

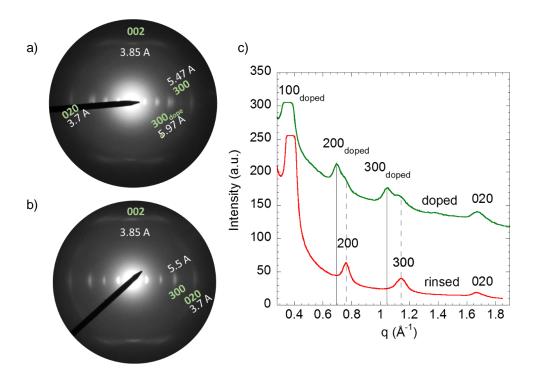
¹ Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France

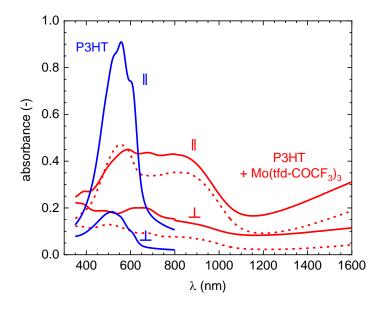

² Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden

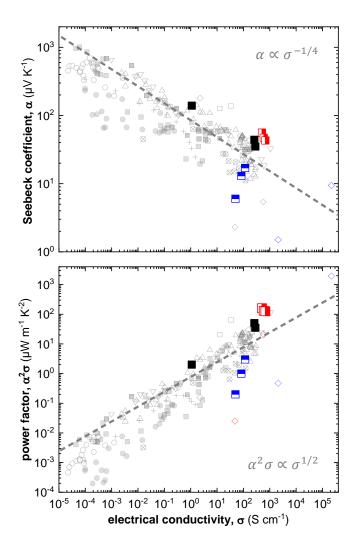
³ School of Chemistry & Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA


⁴ Centre for Advanced Materials, Heidelberg University, 69120 Heidelberg, Germany e-mail: christian.muller@chalmers.se; martin.brinkmann@ics-cnrs.unistra.fr


Figure S1. UV-vis-NIR absorbance spectra of a P3HT film before (blue) and after (red) sequential doping with Mo(tfd-COCF₃)₃: $c_{Mo} \sim 0.1$ g L⁻¹ (top), $c_{Mo} \sim 7.5$ g L⁻¹ (bottom).


Figure S2. Change in conductivity σ/σ_0 (top) and Seebeck coefficient α/α_0 (bottom) of P3HT doped with $c_{Mo} \sim 7.5$ g L⁻¹ during storage in a glove box; gray diamonds: neat P3HT ($\sigma_0 \sim 285$ S cm⁻¹; $\alpha_0 \sim 35$ μ V K⁻¹); red circles: rubbed P3HT parallel to rubbing direction ($\sigma_0 \sim 681$ S cm⁻¹; $\alpha_0 \sim 43$ μ V K⁻¹); after 7 days storage in a glove box the rubbed samples was exposed to air.


Figure S3. Polarized UV-vis-NIR absorbance spectra of rubbed P3HT and the same P3HT film sequentially doped with Mo(tfd-COCF₃)₃, $c_{Mo} \sim 2.5$ g L⁻¹ (top) and $c_{Mo} \sim 7.5$ g L⁻¹ (bottom), measured parallel (||) and perpendicular (\perp) to the rubbing direction R.


Figure S4. Dichroic ratio of neat rubbed P3HT versus wavelength; at 633 nm a maximum dichroic ratio of $A_{\parallel}/A_{\perp} \sim 11.5$ is obtained.

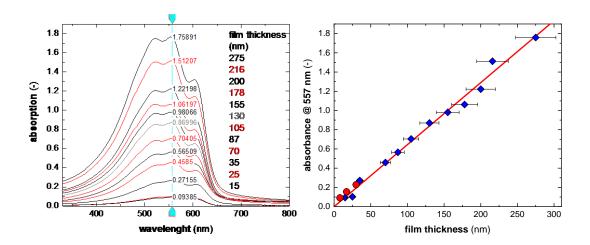

Figure S5. (a) Electron diffraction (ED) patterns of rubbed and Mo(tfdCOCF₃)₃-doped P3HT film before and (b) after rinsing the doped film with AcN. (c) Section profiles of ED patterns along the equator indicating doubling of the (*h*00) reflections due to the presence of two populations of crystallites (green curve); upon rinsing the ED pattern returns to the neat P3HT form (red curve).

Figure S6. Polarized UV-vis-NIR absorbance spectra of rubbed P3HT (blue), rubbed P3HT doped with $c_{Mo} \sim 2.5$ g L⁻¹ Mo(tfd-COCF₃)₃ (red solid line) and the same doped film after rinsing with AcN (red dashed line) measured parallel (||) and perpendicular (\perp) to the rubbing direction; rinsing with AcN reduces the charge-carrier concentration from $N_v \sim (3.6 \pm 0.4) \cdot 10^{26}$ m⁻³ to $(3.3 \pm 0.4) \cdot 10^{26}$ m⁻³ and leads to an increase in the neutral polymer absorbance at 550 nm. Note the decrease in the vertical offset of the UV-vis-NIR spectra upon rinsing with AcN, which we explain with removal of excess dopant from the top of the film.

Figure S7. (a) Seebeck coefficient α and (b) power factor $\alpha^2\sigma$ versus electrical conductivity σ of isotropic P3HT (\blacksquare), and rubbed P3HTmeasured parallel (\blacksquare) and perpendicular to the rubbing direction (\blacksquare); grey data points are literature values extracted from ref. 1. as well as references therein; literature values are from ref. 2 (red and blue diamonds); dashed lines represent the empirical trends $\alpha \propto \sigma^{-0.25}$ and $\alpha^2\sigma \propto \sqrt{\sigma}$.

Figure S8. (a) Representative absorption spectra of spin-coated P3HT ($M_n \sim 29 \text{ kg mol}^{-1}$, RR $\sim 96 \%$, PDI ~ 2.2) from a 1:1 mixture of chlorobenzene:oDCB, the concentration of P3HT was varied from 2 to 30 g L⁻¹ to obtain films with different thicknesses. The UV-vis absorption spectra were measured with a Pekin Elmer Lambda 950 spectrophotometer and the thickness was measured with a KLA Tencor AlphaStep D-100 profilometer. (b) Calibration curve for P3HT film thickness obtained by plotting the absorption at 557 nm versus film thickness. Average measurement deviation was $\sim 5\%$, error bars in the graph represent an error of 10%. Blue diamonds: absorbance at 557 nm of spectra shown in Figure S8; Red circles: absorbance vs. thickness measured for films prepared with the P3HT batch used in this study ($M_n \sim 24 \text{ kg mol}^{-1}$, RR $\sim 95.9 \%$, PDI ~ 1.8).

- 1. Hynynen, J.; Kiefer, D.; Müller, C., Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ. *RSC Adv.* **2018**, 8, 1593-1599.
- 2. Vijayakumar, V.; Zhong, Y.; Untilova, V.; Bahri, M.; Herrmann, L.; Biniek, L.; Leclerc, N.; Brinkmann, M., Bringing Conducting Polymers to High Order: Toward Conductivities beyond 10⁵ S cm⁻¹ and Thermoelectric Power Factors of 2 mW m⁻¹ K⁻². *Adv. Energy Mater.* **2019**, *9*, 1900266.